1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
use std::f32::consts::{FRAC_PI_4, PI, TAU};

use bevy::prelude::*;
use de_core::{
    gamestate::GameState,
    objects::MovableSolid,
    schedule::{Movement, PreMovement},
    state::AppState,
};
use de_types::projection::ToAltitude;

use crate::{
    altitude::{AltitudeSet, DesiredClimbing},
    movement::{DesiredVelocity, MovementSet, ObjectVelocity},
    repulsion::{RepulsionLables, RepulsionVelocity},
    G_ACCELERATION, MAX_ANGULAR_SPEED, MAX_H_SPEED, MAX_V_ACCELERATION, MAX_V_SPEED,
};

pub(crate) struct KinematicsPlugin;

impl Plugin for KinematicsPlugin {
    fn build(&self, app: &mut App) {
        app.add_systems(
            PreMovement,
            setup_entities.run_if(in_state(AppState::InGame)),
        )
        .add_systems(
            Movement,
            kinematics
                .run_if(in_state(GameState::Playing))
                .in_set(KinematicsSet::Kinematics)
                .before(MovementSet::UpdateTransform)
                .after(RepulsionLables::Apply)
                .after(AltitudeSet::Update),
        );
    }
}

#[derive(Copy, Clone, Hash, Debug, PartialEq, Eq, SystemSet)]
enum KinematicsSet {
    Kinematics,
}

type Uninitialized<'w, 's> =
    Query<'w, 's, (Entity, &'static Transform), (With<MovableSolid>, Without<Kinematics>)>;

#[derive(Component)]
struct Kinematics {
    /// Current horizontal speed in meters per second.
    horizontal_speed: f32,
    /// Current vertical speed in meters per second.
    vertical_speed: f32,
    /// Current object heading in radians.
    heading: f32,
}

impl Kinematics {
    fn horizontal_speed(&self) -> f32 {
        self.horizontal_speed
    }

    fn vertical_speed(&self) -> f32 {
        self.vertical_speed
    }

    fn heading(&self) -> f32 {
        self.heading
    }

    fn update_horizontal_speed(&mut self, delta: f32) {
        debug_assert!(delta.is_finite());
        self.horizontal_speed = (self.horizontal_speed + delta).clamp(0., MAX_H_SPEED);
    }

    fn update_vertical_speed(&mut self, delta: f32) {
        debug_assert!(delta.is_finite());
        self.vertical_speed = (self.vertical_speed + delta).clamp(-MAX_V_SPEED, MAX_V_SPEED);
    }

    fn update_heading(&mut self, delta: f32) {
        debug_assert!(delta.is_finite());
        self.heading = normalize_angle(self.heading + delta);
    }

    fn compute_velocity(&self) -> Vec3 {
        let (sin, cos) = self.heading.sin_cos();
        (self.horizontal_speed * Vec2::new(cos, sin)).to_altitude(self.vertical_speed)
    }
}

impl From<&Transform> for Kinematics {
    fn from(transform: &Transform) -> Self {
        Self {
            horizontal_speed: 0.,
            vertical_speed: 0.,
            heading: normalize_angle(transform.rotation.to_euler(EulerRot::YXZ).0),
        }
    }
}

fn setup_entities(mut commands: Commands, objects: Uninitialized) {
    for (entity, transform) in objects.iter() {
        commands.entity(entity).insert(Kinematics::from(transform));
    }
}

fn kinematics(
    time: Res<Time>,
    mut objects: Query<(
        &DesiredVelocity<RepulsionVelocity>,
        &DesiredClimbing,
        &mut Kinematics,
        &mut ObjectVelocity,
    )>,
) {
    let time_delta = time.delta_seconds();

    objects
        .par_iter_mut()
        .for_each(|(movement, climbing, mut kinematics, mut velocity)| {
            let desired_h_velocity = movement.velocity();
            let desired_heading = if desired_h_velocity == Vec2::ZERO {
                kinematics.heading()
            } else {
                desired_h_velocity.y.atan2(desired_h_velocity.x)
            };

            let heading_diff = normalize_angle(desired_heading - kinematics.heading());
            let max_heading_delta = MAX_ANGULAR_SPEED * time_delta;
            let heading_delta = heading_diff.clamp(-max_heading_delta, max_heading_delta);
            kinematics.update_heading(heading_delta);

            let max_h_speed_delta = MAX_H_SPEED * time_delta;
            let h_speed_delta = if (heading_diff - heading_delta).abs() > FRAC_PI_4 {
                // Slow down if not going in roughly good direction.
                -kinematics.horizontal_speed()
            } else {
                desired_h_velocity.length() - kinematics.horizontal_speed()
            }
            .clamp(-max_h_speed_delta, max_h_speed_delta);
            kinematics.update_horizontal_speed(h_speed_delta);

            let v_speed_delta = (climbing.speed() - kinematics.vertical_speed()).clamp(
                -time_delta * G_ACCELERATION,
                time_delta * MAX_V_ACCELERATION,
            );
            kinematics.update_vertical_speed(v_speed_delta);

            velocity.update(kinematics.compute_velocity(), kinematics.heading());
        });
}

fn normalize_angle(mut angle: f32) -> f32 {
    angle %= TAU;
    if angle > PI {
        angle -= TAU;
    } else if angle <= -PI {
        angle += TAU
    }
    angle
}