1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
use std::{cmp::Ordering, time::Duration};

use bevy::prelude::Component;
use glam::Vec3;
use serde::{Deserialize, Serialize};

#[derive(Component, Clone)]
pub struct LaserCannon {
    muzzle: Vec3,
    range: f32,
    damage: f32,
    charge: LaserCharge,
}

impl LaserCannon {
    /// Returns relative position of the cannon muzzle to the object.
    pub fn muzzle(&self) -> Vec3 {
        self.muzzle
    }

    /// Maximum range of the laser in meters. Objects further than this cannot
    /// be hit.
    pub fn range(&self) -> f32 {
        self.range
    }

    /// When an object is hit, its health is decreased by this amount.
    pub fn damage(&self) -> f32 {
        self.damage
    }

    pub fn charge(&self) -> &LaserCharge {
        &self.charge
    }

    pub fn charge_mut(&mut self) -> &mut LaserCharge {
        &mut self.charge
    }
}

/// Charge of a laser cannon. It is used to keep track of needed cannon
/// charging time.
///
/// A laser cannon cannot fire immediately after it is activated, but takes
/// time to charge. After firing, it has to (re)charge. It has to recharge
/// after it any (re)activation.
///
/// [`Self::tick`] must be called during every frame. After that,
/// [`Self::hold`] or [`Self::fire`] must be called in a loop while
/// [`Self::charged`] returns true.
///
/// LaserTimer implements total ordering based on elapsed time since reaching
/// charge for at least one fire.
#[derive(Clone, PartialEq)]
pub struct LaserCharge {
    charge_time: Duration,
    discharge_time: Duration,
    charge: f32,
}

impl LaserCharge {
    /// Returns a new timer.
    ///
    /// # Arguments
    ///
    /// * `charge_time` - time it takes to fully (re)charge the laser cannon.
    ///
    /// * `discharge_time` - time it takes to fully discharge the laser cannot
    ///   if it is not actively charged.
    ///
    /// # Panics
    ///
    /// Panics if `charge_time` or `discharge_time` spans zero time.
    fn new(charge_time: Duration, discharge_time: Duration) -> Self {
        assert!(!charge_time.is_zero());
        assert!(!discharge_time.is_zero());

        Self {
            charge_time,
            discharge_time,
            charge: 0.,
        }
    }

    /// Updates the timer.
    ///
    /// # Arguments
    ///
    /// * `time_delta` - time delta since last call to this method.
    ///
    /// * `charge` - true if the cannon is charging, false if it is
    ///   discharging.
    pub fn tick(&mut self, time_delta: Duration, charge: bool) {
        if charge {
            self.charge += time_delta.as_secs_f32() / self.charge_time.as_secs_f32();
        } else {
            self.charge -= time_delta.as_secs_f32() / self.discharge_time.as_secs_f32();
            self.charge = self.charge.max(0.);
        }
    }

    /// Returns true if the cannon is charged for at least one fire.
    pub fn charged(&self) -> bool {
        self.charge >= 1.
    }

    /// Clamps charge to one fire.
    ///
    /// Must be called after [`Self::tick`].
    pub fn hold(&mut self) {
        self.charge = self.charge.min(1.);
    }

    /// Subtracts one fire worth of charge and returns true if there is charge
    /// for another fire.
    ///
    /// Must be called after [`Self::tick`].
    pub fn fire(&mut self) -> bool {
        debug_assert!(self.charge >= 1.);
        self.charge -= 1.;
        self.charged()
    }
}

impl Eq for LaserCharge {}

impl Ord for LaserCharge {
    fn cmp(&self, other: &Self) -> Ordering {
        // Cannon is either fired until the charge goes below 1. or its charge
        // is clipped at 1. Therefore, if the cannon is to be fired, it must
        // have been charging since the last tick.
        //
        // The ordering (who comes first) is based on the above assumptions.
        let self_over = (self.charge - 1.) * self.charge_time.as_secs_f32();
        let other_over = (other.charge - 1.) * other.charge_time.as_secs_f32();
        self_over.partial_cmp(&other_over).unwrap()
    }
}

impl PartialOrd for LaserCharge {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl TryFrom<LaserCannonSerde> for LaserCannon {
    type Error = anyhow::Error;

    fn try_from(info: LaserCannonSerde) -> Result<Self, Self::Error> {
        Ok(Self {
            muzzle: Vec3::from_slice(info.muzzle.as_slice()),
            range: info.range,
            damage: info.damage,
            charge: LaserCharge::new(
                Duration::from_secs_f32(info.charge_time_sec),
                Duration::from_secs_f32(info.discharge_time_sec),
            ),
        })
    }
}

#[derive(Serialize, Deserialize)]
pub(crate) struct LaserCannonSerde {
    muzzle: [f32; 3],
    range: f32,
    damage: f32,
    charge_time_sec: f32,
    discharge_time_sec: f32,
}

#[cfg(test)]
mod tests {
    use std::cmp::Ordering;

    use super::*;

    #[test]
    fn test_charge() {
        let mut charge =
            LaserCharge::new(Duration::from_secs_f32(2.5), Duration::from_secs_f32(3.5));

        assert!(!charge.charged());

        charge.tick(Duration::from_secs(2), true);
        assert!(!charge.charged()); // charge: 0.8
        charge.tick(Duration::from_secs(1), true);
        assert!(charge.charged()); // charge: 1.2
        charge.fire();
        assert!(!charge.charged()); // 0.2
        charge.tick(Duration::from_secs(2), true);
        assert!(charge.charged()); // charge: 1
        charge.fire();
        assert!(!charge.charged()); // charge: 0
        charge.tick(Duration::from_secs_f32(2.4), true);
        assert!(!charge.charged()); // charge: 0.96
        charge.tick(Duration::from_secs_f32(2.6), true);
        assert!(charge.charged()); // charge: 2
        charge.tick(Duration::from_secs_f32(3.4), false);
        assert!(charge.charged()); // charge: 1.028
        charge.tick(Duration::from_secs_f32(0.15), false);
        assert!(!charge.charged()); // charge: 0.985
    }

    #[test]
    fn test_timer_ordering() {
        let mut a = LaserCharge::new(Duration::from_secs(2), Duration::from_secs(1));
        a.tick(Duration::from_secs(3), true);
        let mut b = LaserCharge::new(Duration::from_secs(4), Duration::from_secs(1));
        b.tick(Duration::from_secs(5), true);
        let mut c = LaserCharge::new(Duration::from_secs_f32(0.1), Duration::from_secs(1));
        c.tick(Duration::from_secs(10), true);

        assert!(a.cmp(&b) == Ordering::Equal);
        assert!(b.cmp(&a) == Ordering::Equal);
        assert!(a.cmp(&c) == Ordering::Less);
        assert!(c.cmp(&a) == Ordering::Greater);
        assert!(b.cmp(&c) == Ordering::Less);
        assert!(c.cmp(&b) == Ordering::Greater);
    }
}