1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
use parry2d::{math::Point, query::Ray, shape::Segment};
use crate::geometry::{which_side, RayProjection, Side};
/// Projection of a line segment onto another line segment from the perspective
/// of an eye (a point). The projection can be looked at as a shadow cast by
/// the one segment onto the other segment with the source of light placed at
/// the eye.
pub(super) struct SegmentOnSegmentProjection {
side_a: Option<ParamPair>,
middle: Option<ParamPair>,
side_b: Option<ParamPair>,
}
impl SegmentOnSegmentProjection {
pub(super) fn construct(eye: Point<f32>, source: Segment, target: Segment) -> Self {
let target_length = target.length();
if eye == source.a || eye == source.b {
return Self::new(None, Some(ParamPair::new(0., 1.)), None);
}
let ray_a = Ray::new(eye, source.a - eye);
let ray_b = Ray::new(eye, source.b - eye);
debug_assert_eq!(ray_a.origin, ray_b.origin);
let ray_a_proj = RayProjection::calculate(ray_a, target);
let ray_b_proj = RayProjection::calculate(ray_b, target);
let ray_b_side = which_side(ray_a.origin, ray_a.point_at(1.), ray_b.point_at(1.));
let side_a = Self::construct_a(ray_a_proj, ray_b_side, target_length);
let middle = Self::construct_middle(ray_a_proj, ray_b_proj, target_length);
let side_b = Self::construct_b(ray_b_proj, ray_b_side, target_length);
Self::new(side_a, middle, side_b)
}
fn construct_a(
ray_a_proj: RayProjection,
ray_b_side: Side,
target_length: f32,
) -> Option<ParamPair> {
let param = ray_a_proj.parameter().unwrap_or(1.);
let corner = if ray_a_proj.endpoint_a_side() == ray_b_side {
1.
} else {
0.
};
ParamPair::normalized(param, corner, target_length)
}
fn construct_b(
ray_b_proj: RayProjection,
ray_b_side: Side,
target_length: f32,
) -> Option<ParamPair> {
let param = ray_b_proj.parameter().unwrap_or(1.);
let corner = if ray_b_proj.endpoint_a_side() != ray_b_side {
1.
} else {
0.
};
ParamPair::normalized(param, corner, target_length)
}
fn construct_middle(
ray_a_proj: RayProjection,
ray_b_proj: RayProjection,
target_length: f32,
) -> Option<ParamPair> {
match (ray_a_proj.parameter(), ray_b_proj.parameter()) {
(Some(a), Some(b)) => ParamPair::normalized(a, b, target_length),
(None, None) => {
if ray_a_proj.endpoint_a_side() == ray_b_proj.endpoint_a_side() {
None
} else {
Some(ParamPair::new(0., 1.))
}
}
(Some(param), None) | (None, Some(param)) => {
let corner = if ray_a_proj.endpoint_a_side() == ray_b_proj.endpoint_a_side() {
1.
} else {
0.
};
ParamPair::normalized(param, corner, target_length)
}
}
}
fn new(
side_a: Option<ParamPair>,
middle: Option<ParamPair>,
side_b: Option<ParamPair>,
) -> Self {
assert!(side_a.is_some() || middle.is_some() || side_b.is_some());
Self {
side_a,
middle,
side_b,
}
}
/// Non-visible part of the target line segment adjacent to endpoint a.
/// This is None when all of target is visible.
pub(super) fn side_a(&self) -> Option<ParamPair> {
self.side_a
}
/// Visible part of the target line segment. This is None in None if no
/// point of the target line segment is visible (from eye via the source
/// line segment).
pub(super) fn middle(&self) -> Option<ParamPair> {
self.middle
}
/// Non-visible part of the target line segment adjacent to endpoint b.
/// This is None when all of target is visible.
pub(super) fn side_b(&self) -> Option<ParamPair> {
self.side_b
}
}
/// Parameters of a (sub-)segment of a line segment.
#[derive(Clone, Copy, Debug, PartialEq)]
pub(super) struct ParamPair(f32, f32);
impl ParamPair {
/// Round parameters very close to 0 or 1 to exact 0 or 1.
///
/// # Arguments
///
/// * `parameter` - parameter to be rounded.
///
/// * `scale` - size of the line segment to take into account for the
/// rounding. The large the scale the less aggressive the rounding.
fn round(parameter: f32, scale: f32) -> f32 {
// Due to the nature of the algorithm, the ray and the segment
// frequently intersect near one of the endpoints. To avoid rounding
// issues, this rounding method must be used.
let scaled = parameter * scale;
if scaled.abs() < 0.01 {
0.
} else if (scale - scaled).abs() < 0.01 {
1.
} else {
parameter
}
}
/// Creates a normalized (sub-)segment parameter pair. The resulting pair
/// is ordered (i.e. ordering of the first two arguments does not matter)
/// and rounded (to avoid precision issues).
///
/// None is returned in the case when the resulting interval contains only
/// a single point.
///
/// # Arguments
///
/// * `a` - first projection parameter. A number between 0. and 1.
/// Arguments `a` and `b` may be swapped.
///
/// * `b` - see `a`.
///
/// * `scale` - size of the corresponding line segment. It is used for
/// proper parameter rounding.
fn normalized(a: f32, b: f32, scale: f32) -> Option<Self> {
let a = Self::round(a, scale);
let b = Self::round(b, scale);
if a < b {
Some(Self::new(a, b))
} else if a > b {
Some(Self::new(b, a))
} else {
None
}
}
pub(super) fn new(a: f32, b: f32) -> Self {
debug_assert!(0. <= a);
debug_assert!(a < b);
debug_assert!(b <= 1.);
Self(a, b)
}
/// Apply the parameters on the parent line segment and return the
/// (sub-)segment.
pub(super) fn apply(&self, segment: Segment) -> Segment {
debug_assert!(segment.length() > 0.);
let dir = segment.scaled_direction();
Segment::new(
if self.0 == 0. {
// To avoid rounding errors around corners.
segment.a
} else {
segment.a + self.0 * dir
},
if self.1 == 1. {
segment.b
} else {
segment.a + self.1 * dir
},
)
}
/// Returns true if the first parameter coincides with endpoint a of the
/// parent line segment.
pub(super) fn includes_corner_a(&self) -> bool {
self.0 == 0.
}
/// Returns true if the first parameter coincides with endpoint b of the
/// parent line segment.
pub(super) fn includes_corner_b(&self) -> bool {
self.1 == 1.
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_construct() {
let projection = SegmentOnSegmentProjection::construct(
Point::new(0., 4.),
Segment::new(Point::new(2., 4.), Point::new(2., 1.)),
Segment::new(Point::new(4., 2.), Point::new(4., 10.)),
);
assert_eq!(projection.side_a(), Some(ParamPair::new(0.25, 1.)));
assert_eq!(projection.middle(), Some(ParamPair::new(0., 0.25)));
assert!(projection.side_b().is_none());
let projection = SegmentOnSegmentProjection::construct(
Point::new(0., 4.),
Segment::new(Point::new(2., 4.), Point::new(2., 1.)),
Segment::new(Point::new(4., 10.), Point::new(4., 2.)),
);
assert_eq!(projection.side_a(), Some(ParamPair::new(0., 0.75)));
assert_eq!(projection.middle(), Some(ParamPair::new(0.75, 1.)));
assert!(projection.side_b().is_none());
}
}